Selected Recent Talks and Posters

  1. Role of quantum band geometry in the fractional quantum Hall effect in periodic systems [video]
    BIRS, August 2016
  2. Topological Phases in Floquet Systems [slides]
    Caltech, May 2016
  3. The Role of Quantum Geometry and Space Group Symmetries in some Interacting Systems [slides]
    California State University, Long Beach, April 2015
  4. Geometry, topology and symmetry in strongly correlated materials [poster]
    UCLA, March 2015
  5. The Role of Space Group Symmetries in Many Body Interacting Systems [video]
    Simons Center for Geometry and Physics, June 2013


  1. Floquet topological phases with symmetry in all dimensions, R. Roy and F. Harper, Phys. Rev. B 95, 195128 (2017), Editors' Suggestion

  2. Floquet Topological Order in Interacting Systems of Bosons and Fermions, F. Harper and R. Roy, Phys. Rev. Lett. 118, 115301 (2016), Editors' Suggestion

  3. Periodic Table for Floquet Topological Insulators, R. Roy and F. Harper, arXiv: 1603.06944 (2016).

  4. Abelian Floquet symmetry-protected topological phases in one dimension, R. Roy and F. Harper, Phys. Rev. B 94, 125105 (2016).

  5. Quantum geometry and stability of the fractional quantum Hall effect in the Hofstadter model, D. Bauer, T. S. Jackson and R. Roy, Phys. Rev. B 93, 235133 (2016).

  6. Geometric stability of topological lattice phases, T. S. Jackson, G. Mo ̈ller and R. Roy, Nat. Commun. 6, 8629 (2015).

  7. Perturbative approach to flat Chern bands in the Hofstadter model, F. Harper, S. H. Simon, and R. Roy, Phys. Rev. B 90, 075104 (2014).

  8. Generalizing Quantum Hall Ferromagnetism to Fractional Chern Bands, A. Kumar, R. Roy, and S. L Sondhi, Phys. Rev. B 90, 245106 (2014).

  9. Hall conductivity in the normal and superconducting phases of the Rashba system with Zeeman field, S. B. Chung and R. Roy, Phys. Rev. B 90, 224510 (2014).

  10. Fractional quantum Hall physics in topological flat bands, S. A. Parameswaran, R. Roy and S. L. Sondhi, C. R. Physique 14, 816 (2013).

  11. Space group symmetries and low lying excitations of many-body systems at integer fillings, R. Roy, arXiv: 1212.2944 (2012).

  12. Band geometry of fractional topological insulators, R. Roy, Phys. Rev. B 90, 075104 (2014).

  13. Fractional Chern insulators and the W∞ algebra, S. A. Parameswaran, R. Roy and S. L. Sondhi, Phys. Rev. B 85, 241308 (2012).

  14. Fractional quantum Hall effect without Landau levels, R. Roy and S. L. Sondhi, Physics 4, 46 (2011).

  15. Topological pumps and adiabatic cycles, R. Roy, arXiv:1104.1979.

  16. Topological Majorana and Dirac zero modes in superconducting vortex cores, R. Roy, arXiv:1001.2571, Phys. Rev. Lett. 105, 186401 (2010).

  17. Characterization of 3d topological insulators by 2d invariants, (Invited paper), R. Roy, arXiv:1004.3507, New J. Phys. 12, 065009 (2010).

  18. Topological phases and the quantum spin Hall effect in three dimensions, R. Roy, cond-mat/0607531, Phys. Rev. B 79, 195322 (2009).

  19. Z2 classification of quantum spin Hall systems: An approach using time-reversal invariance, R. Roy, cond-mat/0604211, Phys. Rev. B 79, 195321 (2009).

  20. Collective modes and electromagnetic response of a chiral superconductor, R. Roy, C. Kallin, arXiv:0802.3693, Phys. Rev. B 77, 174513 (2008).

  21. Topological superfluids with time reversal symmetry, R. Roy,arXiv:0803.2868.

  22. Spin-Hall effect in triplet chiral superconductors and graphene, K. Sengupta, R. Roy and M. Maiti, cond-mat/0604217, Phys. Rev. B 74, 094505 (2006).

  23. Topological invariants of time reversal invariant superconductors, R. Roy, cond-mat/0608064.

  24. Integer quantum Hall effect on a square lattice with zero net magnetic field, R. Roy, cond-mat/0603271.

  25. Edge modes, edge currents, and gauge invariance in px + ipy superfluids and superconductors, M. Stone and R. Roy, cond-mat/0308034, Phys. Rev. B. 69, 184511 (2004).